Birefringence dispersion in fused silica for DUV lithography

نویسنده

  • Richard Priestley
چکیده

A shift to shorter wavelength radiation sources along with improvements in the quality of lithography grade optical materials has driven the production of integrated circuits with smaller feature sizes. Optical characterization of these materials, in some cases, is performed at visible wavelengths due to the complexity level associated with measuring in the DUV. Birefringence measurements of stepper lens blanks, for example, are typically measured at 633nm using a Helium Neon laser source. However, knowledge of the correlating DUV birefringence values is needed for determining the acceptable magnitude of birefringence in the material and for predicting the magnitude of loss in CD contrast. In this paper we report results on how the birefringence in Corning’s HPFS synthetic silica glass changes at the DUV wavelengths used in lithography systems. An examination of the wavelength dependent stress-optic response that produces birefringence was performed and found to increase from 633nm to 193nm. Birefringence in lithography stepper lens elements degrades imaging performance so an understanding of its dispersion is important for system designs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diffraction-limited performance of flat-substrate reflective imaging gratings patterned by DUV photolithography.

We report on the first demonstration of flat substrate imaging gratings fabricated by deep ultraviolet (DUV) photoreduction lithography, which uniquely offers sub-100-nm resolution and spatial coherence over centimeter scales. Reflective focusing gratings, designed according to holographic principle, were fabricated on 300-mm silicon wafers by immersion DUV lithography. Spatial coherence of the...

متن کامل

Nanoindentation and birefringence measurements on fused silica specimen exposed to low-energy femtosecond pulses.

Femtosecond laser pulses used in a regime below the ablation threshold have two noticeable effects on Fused Silica (a-SiO2): they locally increase the material refractive index and modify its HF etching selectivity. The nature of the structural changes induced by femtosecond laser pulses in fused silica is not fully understood. In this paper, we report on nanoindentation and birefringence measu...

متن کامل

Investigation of Thermal Dispersion and Thermally-Induced Birefringence on High-Power Double Clad Yb:Glass Fiber Laser

In this work the effects of heat generation on the modes of Yb:Glass double clad fiber laser were investigated. The thermal dispersion and thermally-induced birefringence were considered when the gain medium becomes an anisotropic medium. The results showed considerable modifications of laser modes profiles, in particular for transfer magnetic (TM) and transfer electric (TE) modes which their p...

متن کامل

Refractive index dispersion and related properties in fluorine doped silica.

Refractive index dispersion has been determined for fluorine doped fused silica containing 1 and 2% fluorine. Addition of fluorine is found to reduce the refractive index and material dispersion. Fibers modeled for minimization of modal dispersion having fused silica cores and fluorine doped silica cladding show a strong composition dependence of the optimum refractive index profile. Comparison...

متن کامل

Investigation of stress induced by CO2 laser processing of fused silica optics for laser damage growth mitigation.

Laser damage mitigation' is a process developed to prevent the growth of nanosecond laser-initiated damage sites under successive irradiation. It consists of re-fusing the damage area with a CO2 laser. In this paper we investigate the stress field created around mitigated sites which could have an influence on the efficiency of the process. A numerical model of CO2 laser interaction with fused ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011